Tetrahedron Letters No.8, pp. 839–846, 1966. Pergamon Press Ltd. Printed in Great Britain.

## ALDGAROSE, A CYCLIC CARBONATE SUGAR OF NATURAL ORIGIN

M. P. Kunstmann, L. A. Mitscher and N. Bohonos

Biohendcal Reeeqch Section, Lederle Laboratories A Division of American Cyanamid Company, Pearl River, New York

## (Received 2 December 1965)

The infrared spectra of some of the neutral macrolide antibiotics contain an unusual absorption band at  $1800 \text{ cm}^{-1}$ . Megacidin (1), bandamycin A (2) and aldgamycin E (3) are typical examples. Despite its unusually high frequency, there has been no comaent in the Uterature as to the molecular meaning of this band. We would like to present evidence that it ia a reflection of the presence of an unusual sugar containing a cyclic carbonate function.

Treatment of aldgamycin E  $(C_{37}H_{58}O_{15}$ ,  $M = 742 \pm 0*$  with barium hydroxide at room temperature leads to the rapid precipitation of one mole of barfum carbonate and the production of a new crystalline antibiotic\*\*, aldgamycin C  $(C_{36}H_{60}O_{1h}$ , M = 716 + 0\*; Found: C, 60.62; H, 8.50; 0, 31.14), m.p. 150-153<sup>°</sup>;  $(2\sqrt{7})^{\frac{25}{5}}$  -70<sup>°</sup> (c 0.670, MeOH),  $\lambda$  max 217 m<sub>H</sub> (log  $\epsilon$ 4.13). Aldgamycin C, which has also been isolated from the same culture filtrate as had bee'n E (Streptomyces lavendulae, Lederle soil **isolate** Ark71), no longer contains the 1800  $cm^{-1}$  band. The difference in molecular formulae is consistent with the hypothetical base-labile cyclic carbonate function  $(4)$ .

Methanolysis of aldgamycin E liberates three sugars, isolated as

<sup>\*</sup>Mrect inlet mass spectroscopy (Atlas CH4).

 $*$ Treatment of bandamycin A under the same conditions gives a similar result.

their methyl glycosides. These are methyl mycinoside (present also in **ch8lccmycin (5) and** neutramycin (6)), methyl aldgaroside A (I) and methyl aldgaroside B (II), the latter two being isomeric. Methyl aldgaroside A  $(1)$  contains the 1800 cm<sup>-1</sup> band and is probably the isomer present in aldgamycin E. Methyl aldgaroside B  $(II)$ , which exhibits the carbonate band at 1770  $\text{cm}^{-1}$ , probably arises from methyl aldgaroside A by an O to 0 acyl migration (7) during the methanolysis and isolation process.



 $\sqrt{\bar{m}}$ .p. 175-177°,  $\sqrt{a}/\frac{c}{D}$  -41° (c 1.004, MeOH), Found for C<sub>10</sub>H<sub>16</sub>0<sub>6</sub>: C, 51.49; H, 7.05; <u>0</u>-methyl, 7.89; <u>C</u>-methyl, 6.09; M = 232 + 0<sup>x</sup>/ with dilute barium Removal of the carbonate function from methyl aldgaroside B hydroxide followed by periodate oxidation gave one mole each of acetaldehyde and glyoxal, isolated as their dinitrophenylhydrazone derivatives. The nmr spectrum of  $II$  (Fig. 1) is consistent with the assigned structure, revealing one 0-methyl group (6.527), two C-methyl groups (8.48Tand 8.777<sub>,</sub>doublets) and one deuterium exchangeable secondary hydroxyl group. In addition,  $H_1$ (5.52T) and  $H_0$  (5.73T) are coupled only to one another (J = 5.5 cps) indicating no hydrogen at  $c_3$ . The three hydrogens at  $c_8$  are coupled (7 cps) to  $H_7$  (6.557) which is in turn coupled to the C<sub>8</sub> hydrogens and a hydroxyl proton (4.727) by 5 cps. The  $H_7$  signal is simplified and the hydroxyl proton peak is lost upon deuterium exchange. Lack of additional coupling

\*Direct inlet m8es spectroscopy (Atlas CH4).

confirms the lack of hydrogen at C<sub>3</sub>.  $\mathbf{H}_{\mathbf{4a}}$  (8.407) and  $\mathbf{H}_{\mathbf{4e}}$  (8.107) are coupled to one another (12 cps) and  $E_{\mu e}$  to a single hydrogen at  $H_{\epsilon}$  (6.157). Apparently the dihedral angle between  $H_{\mu_{\mathbf{q}}}$  and  $H_{\zeta}$  is such that there is very little observable coupling between them. The methyl hydrogens at  $C_f$ are coupled  $(6 \text{ cps})$  with a single hydrogen at  $C_{\varsigma}$ . The coupling constants for the ring hydrogens are intermediate in magnitude and do not allow assignment of the relative stereochemistry with confidence. This may be due to steric constraint imposed upon the ring by the cyclic carbonate function.





NO.8

The mass spectnm(Fig. 2) is also consistent with structure II and the principal fragmentation prosessee can be deduced partly with the aid of several important metastable ions. The three most important processes involve initial loss of 8) the snomeric methoxyl, b) methyl formate followed by propene, and c) propene followed by methyl formate. Paths b and : converge at  $m/e$  130 which then loses mass  $44$  to produce the base peak at  $m/e$  86. This could correspond to either loss of  $CO_{2}$  or  $C_2H_1$ 0, and further fragmentations of  $m/e$  86 did not differentiate between the possibilities. The other fragmentations are largely self explanatory.







The structure of methyl aldgaroside A  $(1)$ , m.p.  $91-94^{\circ}$ , may be deduced from its nmr spectrum (Fig. 3). The spectrum is very similar to that of methyl aldgaroside B (II) except that  $H_2$  is shifted to higher field  $(6.33\tau)$ , and in addition to being coupled  $(4.5 \text{ cps})$  with  $H_1$   $(5.32\tau)$ , is coupled ( $9$  cps) to a hydroxyl hydrogen  $(5.48\tau)$  as shown by deuterium exchange.  $H_7$  now occurs at lower field (5.65 $\tau$ ) and is only coupled with the methyl hydrogens at  $C_8$ . It is well known that acylation of a hydroxyl group results in a downfield shift for the hydrogen attached to the oxygenbearing carbon. Thus, in the case where the hydroxyl at  $C_7$  is acylated by the carbonate function (I),  $H_7$  is shifted downfield, whereas when the hydroxyl at  $C_2$  is acylated (II),  $H_2$  is shifted downfield.



\*After active hydrogen exchange with CD30D.<br>\*\*Spectnmdetermined at 60 Mc in CDCl<sub>3</sub> containing d<sub>6</sub>-DMS0.

The mass spectra of aldgamycin E and C provide additional evidence for the presence of the sugars. "E' has M=742 followed by m/e-567 (loss of mycinosyl), m/e 551 (loss of mycinosyloxy), m/e 540 (loss of aldgarosyl), m/e 524 (loss of aldgarosyloxy) and peaks at m/e 365, 349 and 333 corresponding to various combinations of losses of both sugars with and without their connecting oxygens. The m/e 333 peak, corresponding to loss of both sugars and their connecting oxygens, is the strongest peak above  $m/e$  150. "C" has M = 71.6 followed by m/e 542 (loss of either sugar) and m/e 524 (loss **of either**  sugar and its connecting oxygen) and with additional peaks at m/e 368, 367, 351, 350 and 333 (again corresponding to loss of both sugars with and without their connecting oxygens).

The isolation of aldgexose represents the first recorded observation of a cyclic carbonate sugar from an antibiotic. It is interesting from a biogenetic viewpoint to emphasize the fact that aldgarose end chalcose, the companion sugar to mycinose in chalcomycin and neutremycin, are both  $4,6$ -didesoxy sugars. As all three antibiotics contain mycinose, the altered substitution pattern of aldgarose may be a reflection of an evolutionary change or a biochemical error in that the sugar which was to have been chalcose was further elaborated at an intermediate stage.

**No.8 845** 

## **REFERENCES**

- 1. L. Ettlinger, E. @%m.mn, R. E!ftter, W. Keller-Schierlein, F. Kradolfer, L. Neipp, V. Prelog, P. Reusser and H. Zähner, Monatsh. Chem., 88, 989 (1957).
- 2. S. Kondo, J. M. J. Sakamoto and H. Yumoto, <u>J. Antibiotics</u>, Ser. A,  $1\frac{1}{2}$ , 365 (1961).
- 3. M. P. Kunstmann, L. A. Mitscher and E. L. Patterson, <u>Antimicrobial</u> Agents and Chemotherapy--1964, p. 87, Braun-Brumfield, Inc., Am Arbor, Michigan (1964).
- 4. L. Hough, J. E. Priddle and R. S. Theobald, <u>Adv. in Carbohydrate</u> p. 93, Academic Press, N. Y. (1960). L. Ebugh, J. E. Priddle, R. S. Theobald, G. R. Earker, T. Buglas, and J. W. Spoors, Chem. and Ind. 148 (1960)
- ). H. W. Dion, P. W. K. Woo and Q. R. Bartz, <u>J. Am. Chem. Soc</u>., & 880 (1962).
- 6. M. P. Kunstmann and L. A. Mitscher, <u>Experientia 21</u>, 372 (1965)
- 7. J. S. Sugihara, <u>Advances in Carbohydrate Chemistry</u>, Vol. <u>8</u>, p. 2. Academic Press, N. Y. (1953).